- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000100003000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
De_Lellis, Camillo (4)
-
Hirsch, Jonas (2)
-
De_Philippis, Guido (1)
-
Marchese, Andrea (1)
-
Massaccesi, Annalisa (1)
-
Skorobogatova, Anna (1)
-
Spolaor, Luca (1)
-
Stuvard, Salvatore (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
Beliaev, D (1)
-
Smirnov, S (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
De_Lellis, Camillo; Hirsch, Jonas; Marchese, Andrea; Spolaor, Luca; Stuvard, Salvatore (, Nonlinear Analysis)
-
De_Lellis, Camillo (, European Mathematical Society Publishing House)Beliaev, D; Smirnov, S (Ed.)
-
De_Lellis, Camillo; De_Philippis, Guido; Hirsch, Jonas; Massaccesi, Annalisa (, Memoirs of the American Mathematical Society)Let be a smooth Riemannian manifold, a smooth closed oriented submanifold of codimension higher than and an integral area-minimizing current in which bounds . We prove that the set of regular points of at the boundary is dense in . Prior to our theorem the existence of any regular point was not known, except for some special choice of and . As a corollary of our theorem we answer to a question in Almgren’sAlmgren’s big regularity paperfrom 2000 showing that, if is connected, then has at least one point of multiplicity , namely there is a neighborhood of the point where is a classical submanifold with boundary ; we generalize Almgren’s connectivity theorem showing that the support of is always connected if is connected; we conclude a structural result on when consists of more than one connected component, generalizing a previous theorem proved by Hardt and Simon in 1979 when and is -dimensional.more » « less
An official website of the United States government

Full Text Available